
LLNL-CONF-420726

On the Performance of an
Algebraic Multigrid Solver on
Multicore Clusters

A. Baker, M. Schulz, U. M. Yang

November 25, 2009

VECPAR'10
Berkeley, CA, United States
June 22, 2010 through June 25, 2010



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



On the Performance of an Algebraic Multigrid
Solver on Multicore Clusters

A. H. Baker, M. Schulz, and U. M. Yang
{abaker,schulzm,umyang}@llnl.gov

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

PO Box 808, L-560, Livermore, CA 94551, USA

Abstract. Algebraic multigrid (AMG) solvers have proven to be ex-
tremely efficient on distributed-memory architectures. However, when
executed on modern multicore cluster architectures, we face new chal-
lenges that can significantly harm AMG’s performance. We discuss our
experiences on such an architecture and present a set of techniques that
help users to overcome the associated problems, including thread and
process pinning and correct memory associations. We have implemented
most of the techniques in a MultiCore SUPport library (MCSup), which
helps to map OpenMP applications to multicore machines. We present
results using both an MPI-only and a hybrid MPI/OpenMP model.

1 Motivation

Solving large sparse systems of linear equations is required by many scien-
tific applications, and the AMG solver in hypre [5], called BoomerAMG [4],
is an essential component of simulation codes at Livermore National Laboratory
(LLNL) and elsewhere. The implementation of BoomerAMG focuses primar-
ily on distributed memory issues, such as effective coarse grain parallelism and
minimal inter-processor communication, and, as a result, BoomerAMG demon-
strates good weak scalability on distributed memory machines, as demonstrated
for weak scaling on BG/L using 125,000 processors [3].

Multicore clusters, however, present new challenges for libraries such as hypre,
caused by the new node architectures: multiple processors each with multiple
cores, sharing caches at different levels, multiple memory controllers with affini-
ties to a subset of the cores, as well as non-uniform main memory access times. In
order to overcome these new challenges, we need algorithms with good data lo-
cality at the micro and macro level, few synchronization conflicts, and increased
fine-grain parallelism. Additionally, the OS and runtime system must map the
application to the available cores in a way that reduces scheduling conflicts,
avoids resource contention, and minimizes memory access times.

Additionally, little attention has been paid to effective core utilization and
to the use of OpenMP in AMG in general, and in BoomerAMG in particular.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under contract DE-AC52-07NA27344.



However, with rising numbers of cores per node, the traditional MPI-only model
is expected to be insufficient, both due to limited off-node bandwidth that cannot
support ever-increasing numbers of endpoints, and due to the decreasing memory
per core ratio, which limits the amount of work that can be accomplished in each
coarse grain MPI task. Consequently, hybrid programming models, in which a
subset of or all cores on a node will have to operate through a shared memory
programming model (like OpenMP), will become commonplace.

In this paper we present a comprehensive performance study of AMG on a
large multicore cluster at LLNL and present solutions to overcome the observed
performance bottlenecks. In particular, we make the following contributions:

– A performance study of AMG on a large multicore cluster with 4-socket,
16-core nodes using MPI, OpenMP, and Hybrid programming;

– Scheduling strategies for highly asynchronous codes on multicore platforms;
– A MultiCore SUPport (MCSup) library that provides efficient support for

mapping an OpenMP program onto the underlying architecture.

Our results show that both the MPI and the OpenMP version suffer from
severe performance penalties when executed on our multicore target architecture
without optimizations. To avoid the observed bottlenecks we must pin MPI tasks
to processors and provide a correct association of memory to cores in OpenMP
applications. Further, a hybrid approach shows promising results, since it is
capable of exploiting the scaling sweet spots of both programming models.

2 The Algebraic Multigrid (AMG) Solver

Multigrid methods are popular for large-scale scientific computing because of
their algorithmically scalability: they solve a sparse linear system with N un-
knowns with O(N) computations. They utilize a sequence of smaller linear sys-
tems and capitalize on the ability of inexpensive smoothers (e.g., Gauss-Seidel)
to resolve low-frequency errors on coarser grids. At each level of the grid, the
improved guess is then transferred to a smaller, or coarser, grid, the smoother
is applied again, and the process continues. On the coarsest level, a small linear
system is solved, and then the solution is transferred back up to the fine grid
via interpolation operators.

AMG is a particular multigrid method that does not require an explicit grid
geometry. Instead, coarsening and interpolation processes are determined en-
tirely based on matrix entries. AMG has two distinct phases, the setup and
the solve phase. In the setup phase, the coarse grids, interpolation operators,
and coarse-grid operators are determined. The solve phase performs the multi-
level iterations (often referred to as cycles). For AMG, the setup phase time is
non-trivial and may cost as much as multiple iterations in the solve phase. An
overview of AMG can be found in [3, 6].

For the results in this paper, we used a modification of the BoomerAMG code
in the hypre software library. We chose one of our best performing options, using



HMIS coarsening [2], one level of aggressive coarsening with multipass interpola-
tion [6], and extended+i(4) interpolation [1] on the remaining levels. While the
main focus of the BoomerAMG implementation has been on an efficient MPI im-
plementation, parts of the code have also been threaded with OpenMP. As such,
the solve phase is completely threaded, whereas in the setup phase, only the
generation of the coarse grid operator (essentially a triple matrix product) has
been threaded. Both coarsening and interpolation do not contain any OpenMP
statements. Since AMG is generally used as a preconditioner, we investigate it
as a preconditioner for GMRES(10), which is completely threaded.

The results in this paper focus on the solve phase, though we will also present
some total times (setup + solve times). Note that AMG is a fairly complex
algorithm, and each individual component (e.g., coarsening, interpolation, and
smoothing) affects the convergence rate. In particular, the parallel coarsening
algorithms and the hybrid Gauss-Seidel parallel smoother, which uses sequential
Gauss-Seidel within each MPI or OpenMP task and delayed updates across cores,
are dependent on the number of tasks, the combination of MPI/OpenMP, and
the partitioning of the domain. Since the number of iterations can vary based on
the experimental setup, we rely on average cycle times (instead of the total solve
time) to ensure a fair comparison. Our test problem is a 3D Laplace problem
with a seven-point stencil generated by finite differences, on the unit cube, with
100 × 100 × 100 grid points per node.

3 Experimental Setup

We conduct our experiments on Hera, a multicore cluster installed at LLNL with
864 nodes interconnected by Infiniband. Each node consists of four AMD Quad-
core (8356) 2.3 GHz processors. Each core has its own L1 and L2 cache, but four
cores share a 2 MB L3 cache. Each processor provides its own memory controller
and is attached to a fourth of the 32 GB memory per node. Despite this sepa-
ration, any core can access any memory location: accesses to memory locations
served by the memory controller on the same processor are satisfied directly,
while accesses through other memory controllers are forwarded through the Hy-
pertransport links connecting the four processors. This leads to non-uniform
memory access (NUMA) times depending on the location of the memory.

Each node runs CHAOS 4, a high-performance computing Linux variant
based on Redhat Enterprise Linux. All codes are compiled using Intel’s C and
OpenMP/C compiler (Version 11.1). Further, we rely on SLURM as the under-
lying resource manager and MVAPICH over IB as our MPI implementation.

4 Using an MPI-only Model with AMG

As mentioned in Section 1, the BoomerAMG solver is highly scalable on the
Blue Gene class of machines using an MPI-only programming model. However,
running the AMG solver on the Hera cluster using one MPI task for each of the 16
cores per node yields dramatically different results (Figure 1). Here the problem



size is increased in proportion to the number of cores (using 50×50×25 grid
points per core), and BG/L shows nearly perfect weak scalability with almost
constant execution times for any number of nodes for both total times and cycle
times. On Hera, despite having significantly faster cores, overall scalability is
severely degraded, and execution times are drastically longer for large jobs.

To investigate this observation further, the black line in Figure 2 shows the
performance of the AMG solve phase for a single cycle on 1, 64, and 216 nodes
with varying numbers of MPI tasks per node without affinity optimizations
(Aff=16/16 meaning that each task has equal access to all 16 cores). The prob-
lem uses 100×100 ×100 grid points per node. Within a node we partition the
domain into cuboids so that communication between cores is minimized, e.g., for
10 MPI tasks the subdomain per core consists of 100×50×20 grid points, whereas
for 11 MPI tasks the subdomains are of size 100×100×10 or 100×100×9, leading
to decreased performance for the larger prime numbers. From these graphs we
can make two observations: the performance generally increases for up to six
MPI tasks per node; adding more tasks is counterproductive. Second, this effect
is growing with the number of nodes. While for a single node, the performance
only stagnates, the solve time increases for large node counts. These effects are
caused by a combination of local memory pressure and increased pressure on the
internode communication network.

Additionally, the performance of AMG is reduced by the affinity setting:
while the setting discussed so far (Aff=16/16) provides the OS with the largest
flexibility for scheduling the tasks, it also means that a process can migrate be-
tween cores and with that also between processors. Since the node architecture
based on the AMD Opteron chip is based on separate memory controllers for
each processor, this means that a process, after it has been migrated to a differ-

Fig. 1. Total times and average times per iteration for AMG-GMRES(10) using MPI
only on BG/L and Hera.



Fig. 2. Average times in seconds per AMG-GMRES(10) cycle for varying numbers of
MPI tasks per node.

ent processor, must satisfy all its memory requests by issuing remote memory
accesses. The consequence is a drastic loss in performance. However, if the set of
cores that an MPI task can be executed on is fixed to only those within a proces-
sor, then we leave the OS with the flexibility to schedule among multiple cores,
yet eliminate cross-processor migrations. This choice results in significantly im-
proved performance (gray, solid line marked Aff=4/16). Additional experiments
have further proven that restricting the affinity further to a fixed core for each
MPI task is ineffective and leads to poor performance similar to Aff=16/16.

It should be noted that SLURM is already capable of applying this optimiza-
tion for selected numbers of tasks, but a solution across all configurations still
requires manual intervention.

5 Replacing on-node MPI with OpenMP

The above observations clearly show that an MPI-only programming model is
not sufficient for machines with wide multicore nodes, such as our experimental
platform. Further, the observed trends indicate that this problem will likely get
more severe with increasing numbers of cores. With machines on the horizon for
the next few years that offer even more cores per node as well as more nodes,
solving the observed problems is becoming critical.

Therefore, we study the performance of BoomerAMG on the Hera cluster us-
ing OpenMP and MPI. The most time intensive kernels, the sparse matrix-vector
product (MatVec) and the smoother, account for 60% and 30%, respectively, of
the solve time. Since these two kernels are similar in terms of implementation
and performance behavior, we focus our investigation on the MatVec kernel. The
behavior of the MatVec kernel closely matches the performance of the full AMG
cycle on a single node.



5.1 Optimizing Memory Behavior with MCSup

Figure 3 shows the initial performance of the OpenMP version compared to MPI
in terms of speedup for the MatVec kernel and the AMG-GMRES(10) cycle on
a single node of Hera (16 cores). The main reason for this poor performance lies
in the code’s memory behavior and its interaction with the underlying system
architecture.

On NUMA systems, such as the one used here, Linux’s default policy is to
allocate new memory to the memory controller closest to the executing thread.
In the case of the MPI application, each rank is a separate process and hence
allocates its own memory to the same processor. In the OpenMP case, though,
all memory gets allocated by the master thread and hence on a single processor.
Consequently, this setup leads to large memory access times, since most accesses
will be remote, as well as memory contention on the memory controller respon-
sible for all pages. Additionally, the fine-grain nature of threads make it more
likely for the OS to migrate them, leading to unpredictable access times.

To overcome these issues, we developed MCSup (MultiCore SUPport), an
OpenMP add-on library capable of automatically co-locating threads with the
memory they are using. It performs this in three steps: first MCSup probes the
memory and core structure of the node and determines the number of cores and
memory controllers. Additionally, it determines the maximal concurrency used
by the OpenMP environment and identifies all available threads. In the second
step, it pins each thread to a processor to avoid later migrations of threads
between processors, which would cause unpredictable remote memory accesses.

For the third and final step, it provides the user with new memory allocation
routines that they can use to indicate which memory regions will be accessed
globally and in what pattern. MCSup then ensures that the memory is dis-
tributed across the node in a way that memory is located locally to the threads
most using it. This is implemented using NUMAlib, a set of low-level routines
that provide fine-grain control over page and thread placements.

5.2 Optimized OpenMP Performance

Using the new memory and thread scheme implemented by MCSup greatly im-
proves the performance of the OpenMP version of our code, as shown in Figure 3.
The performance of the 16 OpenMP thread MatVec kernel improved by a factor
of 3.5, resulting in comparable single node performance for OpenMP and MPI.

Also the performance of the AMG-GMRES(10) cycle improves significantly.
However, in this case using MPI tasks instead of threads still results in better
performance on a single node. Possible reasons for this could be other kernels,
such as the multiplication of the transpose of the matrix with a vector, inefficien-
cies on lower levels of the grid refinement, or a larger fraction of code between
OpenMP regions that are executed sequentially. In the final paper we will explore
these issues further and discuss additional optimization strategies.



Fig. 3. Speedup for the MatVec kernel and a cycle of AMG-GMRES(10) on a single
node of Hera.

6 Mixed Programming Model

Due to the apparent shortcomings of both MPI- and OpenMP-only programming
approaches, we next investigate the use of a hybrid approach allowing us to
utilize the scaling sweet spots for both programming paradigms and present
early results. Since we want to use all cores, we explore all combinations with
m MPI processes and n OpenMP threads per process with m ∗ n = 16 within
a node. MPI is used across nodes. Figure 4 shows total times and average cycle
times for various combinations of MPI with OpenMP. Note, that since the setup
phase of AMG is only partially threaded, total times for combinations with large
number of OpenMP threads such as OpenMP or MCSup are expected to be
worse, but they outperform the MPI-only version for 125 and 216 nodes. While
MCSup outperforms native OpenMP, its total times are generally worse than the
hybrid tests. However when looking at the cycle times, its overall performance is
comparable to using 8 MPI tasks with 2 OpenMP threads (Mix 8× 2) or 2 MPI
tasks with 8 OpenMP threads (Mix 2× 8) on 27 or more nodes. Mix 2× 8 does
not use MCSup, since this mode is not yet supported, and therefore shows a
similar, albeit much reduced, memory contention than OpenMP. In general, the
best performance is obtained for Mix 4×4, which indicates that using a single
MPI task per socket with 4 OpenMP threads is the best strategy.

7 Summary

Although the hypre AMG solver scales well on distributed-memory architec-
tures, obtaining comparable performance on multicore clusters is challenging.
Here we described some of the issues we encountered in adapting our code for
multicore architectures and make several suggestion for improving performance.



Fig. 4. Total times (setup + solve phase) in seconds of AMG-GMRES(10) (left) and
average times in seconds for one AMG-GMRES(10) cycle (right). ‘m × n’ denotes m
MPI tasks and n OpenMP threads per node.

In particular, we greatly improved OpenMP performance by pinning threads to
specific cores and allocating memory that the thread will access on that same
core. We also demonstrated that a mixed model of OpenMP threads and MPI
tasks on each node results in superior performance. However, many open ques-
tions remain, particularly those specific to the AMG algorithm. We plan to more
closely examine kernels specific to the setup phase and include OpenMP threads
in those that have not been threaded yet. We will also investigate performance
degradation on the coarse levels and explore the use of new data structures.

References

1. H. De Sterck, R. D. Falgout, J. Nolting, and U. M. Yang. Distance-two interpolation
for parallel algebraic multigrid. Num. Lin. Alg. Appl., 15:115–139, 2008.

2. H. De Sterck, U. M. Yang, and J. Heys. Reducing complexity in algebraic multigrid
preconditioners. SIMAX, 27:1019–1039, 2006.

3. R. D. Falgout. An introduction to algebraic multigrid. Computing in Science and
Eng., 8(6):24–33, 2006.

4. V. E. Henson and U. M. Yang. BoomerAMG: a parallel algebraic multigrid solver
and preconditioner. Applied Numerical Mathematics, 41:155–177, 2002.

5. hypre. High performance preconditioners. http://www.llnl.gov/CASC/linear solvers/.
6. K. Stüben. An introduction to algebraic multigrid. In U. Trottenberg, C. Oosterlee,

and A. Schüller, editors, Multigrid, pages 413–532. Academic Press, London, 2001.


